KIF1A-Associated Neurological Disorders
Advancing therapeutic pipeline

Simranpreet Kaur

Research Officer, Brain and Mitochondrial Research Group
Research Fellow, Department of Paediatrics, The University of Melbourne

Murdoch Children's Research Institute
The Royal Children's Hospital, 50 Flemington Road
Parkville, Victoria 3052 Australia

T +61 3 83416268
E simran.kaur@mcri.edu.au,
simran.kaur@unimelb.edu.au
KIF1A-Associated Neurological Disorders (KAND)

Our vision is to develop a therapeutic pipeline that is meaningful for the KAND families.

- **Brain**
- **Eyes**
- **Muscles**
- **Bones**
- **Stomach**
- **Urinary**

Symptoms:
- Constipation
- Difficulty swallowing
- GERD
- Strabismus
- Diarrhea
- Frequent fevers
- Short stature
- Microcephaly
- Thin/absent corpus callosum
- Cortical visual impairment
- Development delay/ID
- Optic nerve atrophy
- Abnormal muscle tone
- Epileptic seizures
- Cerebral atrophy
- Spasticity
- Genitourinary malformations

Boyle, L. et al, HGG Advances 2021
KIF1A-Associated Neurological Disorders (KAND)

Our vision is to develop a therapeutic pipeline that is meaningful for the KAND families.

- Constipation
- Difficulty swallowing
- GERD
- Strabismus
- Diarrhea
- Frequent fevers
- Short stature
- Microcephaly
- Thin/absent corpus callosum
- Cortical visual impairment
- Development delay/ID
- Optic nerve atrophy
- Abnormal muscle tone
- Epileptic seizures
- Cerebral atrophy
- Spasticity
- Genitourinary malformations
KIF1A-Associated Neurological Disorders (KAND)

Our vision is to develop a therapeutic pipeline that is meaningful for the KAND families.

- Brain
- Eyes
- Muscles
- Bones
- Stomach
- Urinary

Constipation
Difficulty swallowing
GERD
Strabismus
Diarrhea
Frequent fevers
Short stature
Microcephaly
Thin/absent corpus callosum
Cortical visual impairment

Development delay/ID
Optic nerve atrophy
Abnormal muscle tone
Epileptic seizures
Cerebral atrophy
Spasticity
Genitourinary malformations

Seizures 42%
Normal 58%

Boyle, L. et al., HGG Advances 2021
KAND and Epilepsy

Diagram showing a neuron with labeled parts: dendrite, cell body, neurite terminal, synapse, synaptic cargo, KIF1A, tail, stalk, head, and microtubule.
Accelerating treatment for epilepsy in children with KAND

Hypothesis: Characterising the cellular and seizure phenotype of KIF1A-mutant patient neurons and brain organoids and identifying small molecules that ameliorate the seizure phenotype will accelerate novel therapeutic options for KIF1A-related epilepsies.
KAND and Epilepsy

Dendrite → Cell body → Neurite terminal → Neuron 1 → Neuron 2

Normal brain

Electroencephalogram (EEG)

Normal electrical activity

Epileptic brain

Abnormal electrical activity
KAND and Epilepsy – Seizure Prediction Model
KAND and Epilepsy – Seizure Prediction Model

Kelley Gao
KAND and Epilepsy – Seizure Prediction Model

Diagram showing the process:
- KIF1A individual's somatic cells
- NGN2 differentiation method
- CRISPR/Cas9
- Mutation-carrying neurons
- Corrected neurons (isogenic control)
- Neuronal phenotype characterisation

- KIF1A individual-derived iPSC
- Genetically-corrected iPSC

- Synaptic characterisation
- Organoid phenotype characterisation
- Mutation-carrying brain organoid
- Corrected brain organoid

- Multi-Electrode Array (MEA)
- EEG reports
- KIF1A variants

Created with BioRender.com
KAND and Epilepsy – Seizure Prediction Model

- KIF1A individual's somatic cells
- KIF1A individual-derived iPSC
- NGN2 differentiation method
- CRISPR/Cas9
- Neuronal phenotype characterisation
- Mutation-carrying neurons
- Corrected neurons (isogenic control)

- KIF1A variants
- EEG reports
- Multi-Electrode Array (MEA)
- Seizure phenotype prediction model

- Synaptic characterisation
- Organoid phenotype characterisation
- Mutation-carrying brain organoid
- Corrected brain organoid

Created with BioRender.com
KAND and Epilepsy – Drug Discovery

High throughput screening of small molecules using custom made cell models

KIF1A variants EEG reports

Multi-Electrode Array (MEA)
KAND and Epilepsy – Validation in Disease Models

Phenotypic characterisation

Validation of top 5 hits in iPSC derived neurons

High throughput screening of small molecules using custom made cell models

Mutation-carrying neurons

KIF1A variants EEG reports

Multi-Electrode Array (MEA)
KAND and Epilepsy – Validation in Disease Models

Phenotypic characterisation
- Neuronal phenotype
- KIF1A-cargo trafficking

Functional characterisation
- Gene expression analysis (RNA-Seq)
- Protein expression analysis (Proteomics)
- Pathway analysis

Validation of top 5 hits in iPSC derived neurons

High throughput screening of small molecules using custom made cell models

Mutation-carrying neurons

KIF1A variants
- p(Pro305Leu)
- p(Arg318Tyr)
- p(Glu224Lys)
- p(Asp248Glu)
- p(Arg203Ser)
- p(Cys151Thr)

EEG reports

Multi-Electrode Array (MEA)
KAND and Epilepsy – Validation in Disease Models

Assessment of top 3 small molecules in iPSC derived organoids

Mutation-carrying brain organoid

Phenotypic characterisation

Neuronal phenotype KIF1A-cargo trafficking

Functional characterisation

Gene expression analysis (RNA-Seq) Protein expression analysis (Proteomics) Pathway analysis

Validation of top 5 hits in iPSC derived neurons

High throughput screening of small molecules using custom made cell models

UoM ECR Grant Prof Kristen Verhey
Significance and outcomes

Outcomes:

- Develop a seizure phenotype prediction model.
- Create a cost- and time-efficient way of identifying targeted treatments for KAND individuals with refractory seizures.

Significance:

- Critical impact on affected children and their families.
- Wide clinically applicability.
Acknowledgements

Prof. John Christodoulou
Mr. Tim Sikora
Dr. Alejandro Hidalgo-Gonzalez
Ms. Jessica Durrant-Whyte
Ms. Kaitlyn Bibby
A/Prof. Mirana Ramialison
Dr. Nicholas Williamson

A/Prof. Wendy Gold
Dr. Anai Gonzalez Cordero
Dr. Mark Graham
Ms Kelley Gao

Dr. Michael Silverman

Funding Support

MCRI: Pilot Project Grant (2019)
KIF1A.org: Salary support and project grant (2020)
The University of Melbourne: ECR grant (2021)
NHMRC: Ideas grant (2022 – 2025)

A huge thank you to all the lovely super-heroes and their families!
Thank you!

We want all children to have the opportunity to live a healthy and fulfilled life

Our Purpose