What we've learned from the KAND natural history study

July 9, 2021

Lia Boyle, PhD

Chung lab, Columbia University

A Precision Medicine Approach to KAND

1.Characterization

2.Modeling

3.Understanding the model

4.Developing therapies

5.Implementing therapies

A Precision Medicine Approach to KAND

1.Characterization

2.Modeling

3.Understanding the model

4.Developing therapies

5.Implementing therapies

Outline

- Chung lab KAND history
- Natural history study: why is it important?
- Background on our study
- What's in a name? KAND vs SPG30 vs NESCAV
- Refresher on overall symptoms
- New symptom information from our follow up survey
- Focus on seizures
- How you can participate

KAND worldwide

Why do we need a natural history study?

- Helps clinicians and scientists understand disease progression
- Important for identifying and developing best clinical practices
- Identifies factors that affect disease severity
- A critical step in clinical trial readiness

Why do we need a natural history study?

- Helps clinicians and scientists understand disease progression
- Important for identifying and developing best clinical practices
- Identifies factors that affect disease severity
- A critical step in clinical trial readiness

Participating in the study makes sure your voice is heard and your family is represented

What's in a name: KAND vs NESCAV vs SPG30

What's in a name: KAND vs NESCAV vs SPG30

KAND affects the whole body

Cognition, Epilepsy & Behavior

- Developmental delay/intellectual disability: 92%
- Epilepsy: 42%
- Autism: 24%
- Attention deficit/hyperactivity disorder: 19%
- Obsessive compulsive disorder: 5%

Stomach & Digestion

- Reflux: 40%
- Diarrhea: 17%
- Constipation: 39%

Neurological & Musculoskeletal

- Hypotonia: 84%
- Hypertonia/spasticity: 81%
- Peripheral neuropathy: 27%
- Scoliosis: 14%

Neuroimaging abnormalities

- Shrinking of the cerebellum: 35%
- Shrinking of the cortex: 6%
- Corpus callosum abnormalities: 11%

Vision & Eyesight

- Optic nerve atrophy: 50%
- Cortical visual impairment: 20%
- Strabismus: 26%
- Cataracts: 8%

Urinary & Reproductive

- Irregularity in genitalia: 13%
- Kidney problems: 3%

Growth

- Short stature: 13%
- Absence of growth hormone: 3%

Data from Boyle et al., HGG Advances, 2021

7 year old boy

20 year old woman

7 year old boy

20 year old woman

First seizure at 4

٠

7 year old boy

20 year old woman

- First seizure at 4
- Optic nerve atrophy at 10

7 year old boy

• First seizure at 6

20 year old woman

- First seizure at 4
- Optic nerve atrophy at 10

KAND natural history follow up survey

- Participants eligible if initial study interview completed ≥1 year ago
- Follow up surveys received for 74 participants
- Average age at initial interview: 9.5 years old
- Average age at follow up: 11.3 years years old
- Roughly equal males and females with similar age distribution

Sex

Age at follow up

Caroline Mebane

Caroline Mebane

Caroline Mebane

Caroline Mebane

Hypotonia by age

Caroline Mebane

Hypotonia by age

Caroline Mebane

Clumsiness/discoordination by age

Caroline Mebane

Optic nerve atrophy by age

Caroline Mebane

Cortical visual impairment by age

Caroline Mebane

Abnormal neuroimaging by age

Caroline Mebane

Type of neuroimaging abnormalities

Caroline Mebane

Caroline Mebane

Seizures in KAND: Rare Epilepsy Network survey

- Survey designed by Rare Epilepsy Network (REN) to better characterize rare epilepsies
- 101 participants (95% response rate!)
- 45% of participants reported at least one seizure

Jennifer Bain, MD, PhD

Who gets seizures?

Jennifer Bain, MD, PhD

Who gets seizures?

Jennifer Bain, MD, PhD

Who gets seizures?

Jennifer Bain, MD, PhD

Age at first seizure

Jennifer Bain, MD, PhD

Age at first seizure

Jennifer Bain, MD, PhD

Age at first seizure

Jennifer Bain, MD, PhD

How many had a seizure in the last 6 months?

• Out of the participants with any seizure history, 54% had at least one seizure in the last 6 months

Jennifer Bain, MD, PhD

Who had a seizure in the last 6 months?

Jennifer Bain, MD, PhD

What types of seizures do we see?

Anti-seizure medication use

Maintenance medication

Jennifer Bain, MD, PhD

Rescue medication

Anti-seizure maintenance medications

Levetiracetam (Keppra)	69
Clobazam <i>(Onfi)</i>	33
Lamotrigine (Lamictal)	28
Carbamazepine (Tegretol)	22
Valproic acid/Valproate	22
Medical marijuana/Cannabis/Cannabanoid/CBD/THC	19
Clonazepam (Klonopin)	14
Phenytoin <i>(Dilantin)</i>	14
Lorazepam <i>(Ativan)</i>	11
Topiramate (Topamax)	11

Others: lacosamide, oxcarbazepine, vigabatrin, zonisamide ACTH, eslicarbazepine, gabapentin, phenobarbital, prednisone, pregabalin, perampanel

Jennifer Bain, MD, PhD

What this tells us

- Not everyone with KAND has the same challenges
- Some symptoms (e.g., hypertonia) are more common than others (e.g., cortical visual impairment)
- Different symptoms arise at different times
- We still have a lot to learn

Still to learn

- How does the condition change over time?
- Does this differ by genetic variant?
- What treatments do or do not work?

What we need from you

- Keep us updated: fill out your Year 3 Follow Up Survey
 - Survey sent out September 7th, 2021
 - Sent to people in the study for more than 6 months
 - Medical history update as well as Vineland Adaptive Behavior Scale update
- Send us your records
 - Reports: MRI reports, EEG reports, OCT reports
 - Original images and data: MRIs, EEGs
- Help us keep in touch
 - Give us your updated contact information
- Keep an eye out for more opportunities in the future, both virtual and in person...

What we need from you

- Keep us updated: fill out your Year 3 Follow Up Survey
 - Survey sent out September 7th, 2021
 - Sent to people in the study for more than 6 months
 - Medical history update as well as Vineland Adaptive Behavior Scale update
- Send us your records
 - Reports: MRI reports, EEG reports, OCT reports
 - Original images and data: MRIs, EEGs
- Help us keep in touch
 - Give us your updated contact information
- Keep an eye out for more opportunities in the future, both virtual and in person...

Contact us at kif1a study@cumc.columbia.edu !

Acknowledgments

Chung lab

Natural history study team

Caroline Mebane Scott Robinson Laura Hamm

Jennifer Bain, MD, PhD

Thank you to all of you!

For

more

on KAND check out

THEGENE

Funding: KIF1A.org, R01N114636, TL1TR001875