Gene Function: 

The KIF1A protein belongs to the kinesin-3 family. Kinesins are a large family of ATP-dependent molecular motors that drive intracellular transport along microtubules, primarily in the plus direction (in the case of KIF1A, toward axon synaptic terminals). All kinesins contain a conserved motor domain, which undergoes cycles of ATP hydrolysis modulating binding and movement along microtubules.

KIF1A is a murine homolog of Caenorhabditis elegans, and undergoes monomer to dimer transition upon cargo binding. It is an important transporter of synaptic vesicle precursors along microtubule bundles to the axon terminal. Homozygous inactivation of KIF1A in mice leads to severe motor and sensory disturbances and the pups die within 24 h of birth. 

Pathologically, a decrease in the density of presynaptic proteins at the nerve terminals, a concomitant decrease in the number of synaptic vesicles at nerve terminals as well as subsequent neuronal degeneration. This severe phenotype caused by complete absence of gene function demonstrates the importance of the KIF1A motor protein in axon maintenance and transport of vesicles in mice. (Nieh et al)

KIF1A Associated Neurological Disorder  (KAND)

 is a rare disease caused by a change in the KIF1A gene.

  • The first individual with a known KIF1A variant was identified in 2011 Since then, 16 papers have been published describing clinical findings for 66 individuals.

  • Many children with KIF1A have a de novo mutation. De novo mutations are non-inherited, spontaneous genetic changes. 

Changes in KIF1A cause the following disorders:

Cognitive impairment

Cerebellar atrophy


Spastic paraplegia

Optic nerve atrophy

Peripheral neuropathy